
Q14 - Interface Standards
Informal Technical Data

OAda Interfaces to
X Window System

o0
00
N

fTIC FILE COPY

DTIC
Aft ELECTE

NILOV 14 1990

STARS-QS-02021/004/O0
27 March 1989

________-1 @0-ATV N A1 j) -V'

REPORT DForm Approved
DOCUMENTATON PAGE OM No 0704-088

P.M-Clec 1 zwje, t, 41:'-eC*.'o ef nto,"co:or is esim~,ated to seerage H out oer v9Io3rse. -naCuoi- thet time. for reviewing intuttions. ohA tWO ow"M D~
-4 eIP and m;airtaing the oats n ed. anc comoletino an rfteino th f clleclon of Infonmlntgar $n camfIt i Selte q rrehg thisi birOen ptmfflate or an. Cner a"Cl Of 1'1,%

ohet,3n : Ormaolacm. MC in g Sug; anton tor re uCing tis ouraem tO ihiashigton .esOouarers Sev,ces. Dwrenorlae or Pnf mation ocersons, anD Reocris. 12 15 Jefferson
- n.atna. Su.te 12CA VrlngtA. V* 22232-A302. and to trip Ot.e 3

4
Managernt and Buage! oaoer orc Reduction Prolet (0704.0110). Washington. DC .2503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

27 March 1989 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Interface Standards Informal Technical Data,
Ada Interfaces to X Window System STARS Contract

F1 9628-88-D-0031
6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

Unisys Corporation GR-7670-1 069(NP)
12010 Sunrise Valley Drive
Reston, VA 22091

9. SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

Department of the Air Force

Headquarters, Electronic Systems Division (AFSC) Q14-02021/ 004/00
Hanscom AFB, MA 01731-5000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release;
distribution is unlimited

13. ABSTRACT (Maxmum 200 words)

"h This report describes the X Window System and its role in providing
portable user interfaces for the bit-mapped graphics workstation
market. It also shows how the Ada community can best take advantage
of X to create portable applications and encourage code reuse.
Included is a critique of a set of Ada bindings to X, and recommend-
ations for a better approach for providing X for Ada applications.
The X Window System has become the standard window system for the
workstation market. The Ada community can achieve many of its
portability goals by leveraging the work done in the X Window System.
Ada needs an implementation of the Xt toolkit intrinsics, as this is
becoming the standard intrinsics for X toolkits, and needs a single
set of user interface objects for consistent user interfaces among
applications. The advances being made in user interface management
system technology can be incorporated into an Ada user interf-e
standard to provide additional portability and reusability.

14. SUBJECT TERMS 15. NUMBER OF PAGES

X Window System 31
X and Ada 116. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Onclassified Unclassified Unclassified SAR

STARS-QS-02021/004/00

INFORMAL TECHNICAL DATA

STLRS Q14 INTERFACE STANDARDS

Ada INTERFACES TO X WINDOW SYSTEM

CONTRACT NO. F19628-88-D-0031

SDRL Q14-02021

27 March 1989

PUBLICATION NO. GR-7670-1069 (NP)

Prepared for:
Electronic Systems Division

Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5000

Prepared by:
Unisys Corporation

12010 Sunrise Valley Drive
Reston, VA 22091

27 March 1989 STARS-QS-02021/004/00

PREFACE

This document was produced by Unisys Corporation, Defense Systems, in sup-
port of the Unisys STARS Prime contract. This SDRL is for the Interface
Standards Task, Q14, of the Unisys STARS First Increment. It is CDRL type
A005, SDRL number 02021, Volume 4, for the Ada Interfaces to X Window
System.

A0OOSSiOn For

NTIS GRA&I
DTIC TAIR 0

Just If lcetion-----. .

B,

Avrilvbl-jlty COdrIOZ

Dist S

40,

27 March 1989 STARS-QS-02021/004/00

1 Executive Summary

This report describes the X Window System and its role in providing
portable user interfaces for the bit-mapped graphics workstation market.
It also shows how the Ada community can best take advantage of X to create
portable applications and encourage code reuse. Included is a critique of
a set of Ada bindings to X, and recommendations for a better approach for
providing X for Ada applications.

The X Window 3ystem has become the standard window system for the
workstation market. The Ada community can achieve many of its portability
goals by leveraging the work done in the X Window System. Ada needs
an implementation of the Xt toolkit intrinsics, as this is becoming the
standard intrinsics for X toolkits, and needs a single set of user
interface objects for consistent user interfaces among applications. The
advances being made in user interface management system technology can be
incorporated into an Ada user interface standard to provide additional
portability and reusability.

2 Introduction

Two major thrusts of the STARS program, and industry as a whole, are
application portability and reuse of software components. Application
portability can be divided into two types of portability; program
portability, and end user portability. Program portability means a program
written for one machine should require little or no modification to run
on another machine. Program portability is a major concern of the
Department of Defense (DOD) since the DOD uses a wide variety of hardware
platforms. The move to a single programming language Ada by the DOD has
opened the door to program portability. The second type of portability,
end user portability, means a user should be able to run and interact
with the same program on many different machines. The ''look and feel''
of a program should not change from host to host. Related to end user
portability is consistent user interfaces among related programs. This is
especially important to the STARS SEE where many software engineering tools
from a variety of vendors must be integrated to produce a usable software
development environment.

Studies [Myers 88] have shown that 29% to 88% of an application's code
directly involves the user interface. Porting the user interface becomes a
major task in porting an application to a new host. A common, portable
user interface can greatly increase the portability of an application, aids
user portability by keeping the the user interface constant on different
hosts, and can improve cross-application user interface consistency.

A common user interface, usually in the form of subroutine libraries, makes
a large body of reusable code available to the application development
effort. User interface subroutines handle the details of formatting

1

27 March 1989 STARS-QS-02021/004/00

messages to and input from the user, thus an application developer need
only be concerned with the interface to the user interface subroutines and
not the details of handling data to and from the screen.

The intent of this paper is to address the need of STARS for a
standard user interface, an issue that spans the whole computing community.
Currently, the C community is addressing the same issue, and Ada can
build on their efforts. The X Window System developed at M.I.T. is
an established vehicle for standard user interfaces. This paper will
describe the efforts to standardize X, and show how X supports application
portability and reusability. In doing so the paper will show where Ada
can take advantage of this work to fulfill its goals for application
portability and software reusability.

This paper first briefly describes the X Window System, and shows how the
layers of X contribute to portability and reusability. Included in the
discussion of the X Window System layers are user interface management
systems (UIMS), some built on top of X. The paper then looks at the
current standardization efforts in organized standards bodies such as ANSI
and IEEE, and in industry consortiumn to show the directions X is taking
and the opportunities for Ada to utilize this work. X is not the only
window system, and alternative systems are discussed in the paper to show
the strengths and weaknesses of X. Finally, the paper addresses the issue
of what direction an Ada window system should take. The paper evaluates
bindings/implementations of X in Ada, and from the lessons learned maps a
strategy for an Ada implementation of an X based user interface system.
The appendix presents design issues in implementing an Xt toolkit in Ada.

3 X Background

The X Window System [Scheifler 86] [OReilly 88] was developed jointly by
M.I.T. and Digital Equipment Corporation (DEC) under Project Athena. The
principal designers were Robert Scheifler of M.I.T. and Jim Gettys of DEC.
The first public release was Version 10 Release 4 in 1986. In September
1987 a new release, Version 11 Release 1, occurred which was incompatible
with the previous release. In March 1988 Version 11 Release 2 and in
October 1988 Version 11 Release 3 were released, and were compatible with
previous releases. Future releases, if any, are expected to be upward
compatible. The release consists of source code, documentation, and sample
programs.

By making source code available, M.I.T. has encouraged the proliferation
of X. Many companies are now producing X implementations and X based
applications. Releasing source, as M.I.T. did, can often lead to many
distinct versions of X and actually prohibit portability, but to avoid
this the X developers formed the X Consortium, consisting of industry and
academic members, who define an official version of X, and control changes
to X. A test suite is under development for verifying compliance with the X
Consortium definition of X.

2

27 March 1989 STARS-QS-02021/004/00

II i I I I I II -I I I i I I I

I Client I I Client I I Client I I Client I
I I I I I I I

------------------ ------ wr--------- ---------------

II II i
I ere I XSevrI i ere

I I I I

Figure 1: X Window System Architecture

X is a windowing system for bit-mapped graphics displays in a network
environment. X can display to multiple screens and accept input from
a keyboard and a pointing device, usually a mouse. X consists of a
server residing on a display device, such as a Sun or DEC workstation,
a network protocol for communicating with application programs (clients)
which may run anywhere on the network (Figure 1). Current implementations
of X use TCP/IP and DECnet networks and UNIX domain sockets. The server
manages the screen, allowing multiple applications to use the screen
simultaneously. The server captures user input and directs the input to
the correct application, supports two-dimensional graphics, and manages
shared resources among clients, including windows, cursors, and fonts,
and data structures such as graphics contexts for drawing to the display.
To promote program portability and ease of programming, X uses a window
manager to handle screen layout. A user can suggest screen layout, but
the final decision rests with the window manager. An application need
not be concerned with the characteristics of a particular display device a
program might run on. Window managers are special X applications that
are dependent on display device characteristics, and are shared by all
applications on a device.

The mechanism used by the server to pass information to the client is an
event queue. Each application has a queue upon which the server places
input to the application. The applications may also place events on
its own queue and on other client queues. The server thus acts as an
interprocess communication (IPC) vehicle, although the messages are limited
to strings.

3

27 March 1989 STARS-QS-02021/004/00

I Toolkit

i Intrinsics
----------------------- I
I Xlib
----------------------- I
I Protocol

Figure 2: X Layers

3.1 X Structure

The X Window System consists of several layers:

o Xl protocol

o Xlib

o intrinsics

o toolkits

The lowest layer is the protocol used to communicate between server and
client. Above the protocol is Xlib the programming interface to the
protocol. Xlib consists of over two hundred function calls to perform
functions such as drawing to the screen, creating and deleting windows,
selecting fonts and cursors, handling events, and setting and inquiring
about window attributes such as foreground, background, and color. Xlib
is the most primitive interface to X, but provides a sufficient set of
functions for fully portable user interfaces. Applications written at the
Xlib level require considerable programming effort since no basic objects
such as menus and scrollbars are available, and thus contributes little to
reusability.

The protocol and Xlib are the core of all X Window System implementations.
Above the core several distinct paths exist. This paper looks at two of
these paths: the X Toolkit or Xt from M.I.T., and the Xrlib Toolkit
or Xr from Hewlett-Packard (HP). Both implementations consist of a set
of intrinsics for building the higher level user interface components and
libraries of components such as buttons, menus, and scrollbars. In Xt
the intrinsics are also the application program interface to the toolkit.
Figure 2 shows the relationship of the layers of X.

Xt is by far the most popular and many vendors, including DEC and HP, have
extended Xt in their own products. The Xr toolkit usage is declining due
mostly to the popularity of Xt. Ada bindings to the Xr toolkit exist, and
this paper discusses the strengths and weaknesses of Xr as a result of

4

27 March 1989 STARS-QS-02021/004/00

Application

Xt Intrinsics I

widgets I I

----------------- I
----------------------- I

Xlib
----------------------- I

Protocol

Figure 3: Application Program View of Xt

working with the Ada bindings to Xr. No public domain Ada bindings to Xt
exist at this time although there is work in progress. A few proprietary
Ada bindings to Xt are rumored to exist.

3.2 X Toolkit - Xt

Xt [McCormack 88] [Burleigh 88] is an object-oriented toolkit used to build
the higher level user interface components. The Xt Intrinsics provide
primitive classes of objects and mechanisms to build, manage, and integrate
more complex user interface objects. An object providing a user interface
abstraction in Xt is a widget [Swick 88] which consists of an X window,
window attributes, operations, and state information. The intrinsics
provide the programmatic interface for both the widget programmer and the
application programmer. The intrinsics provide routines for application
initialization, widget creation and management, event handling, window
geometry management, and resource management. Applications instantiate
widgets which are maintained in a widget tree and provide functions which
are 'called back'' when an event occurs within a widget. Applications
generally consist of code to instantiate the widget instances for the
application via intrinsics function calls, a set of callback functions for
handling widget events, and a call to an intrinsics provided event dispatch
function (an infinite loop pulling events off the client event queue and
dispatching callback functions). Figure 3 shows the relationship among the
various X layers and the application program.

3.3 Xrlib Toolkit - Xr

Xr (HewlettPackard 88] consists of a set of intrinsic functions, a set
of extensible field editors, and a set of dialog boxes. The intrinsics
provide functions for building field editors, handling events associated
with field editors and functions for combining field editors into dialog

5

27 March 1989 STARS-QS-02021/004/00

Application
--------------------- I
Dialogs I I I
----------- i
I Field Editors I I
I ----------------
I Xr Intrinsics I

-----------------------I
Xlib

----------------------I
Protocol

Figure 4: Application Program View of Xr

boxes. The field editors are the basic building blocks of the user
interface. Examples of field editors are scrollbars, button boxes (radio,
pushbutton, check boxes, etc.), text editors for displaying and entering
data including raster images, and titlebars. The field editors handle
local events pertinent only to the field editor. For instance, a text
editor for entering data will handle all keystrokes until the text input
is complete and then notify the application that text has been entered
and make the text input available to the application. The dialog boxes
are higher level user interface components and usually encapsulate several
field editors needed for a single user interface function. Xr comes with
three dialog boxes:

o a message box for displaying brief messages to the user and a set of

buttons for reply

o a menu dialog for building and handling menu operations

o a more general purpose panel dialog which permits the application to
group together a complex combination of field editors for displaying
and entering data

A panel dialog may have several text editors for entering user data and
a row of buttons or check boxes for selecting options. Xr provides a
mechanism for building new field editors which can be easily integrated
into panel dialogs. Figure 4 shows the relationship among the various Xr
layers and the application program.

4 X Layers - Portability and Reusability

This section describes the effect on portability and reusability of each
of the layers of X, and includes a section on UIMS contributions to
portability.

6

27 March 1989 STARS-QS-02021/004/00

4.1 Protocol and Xlib

The protocol and Xlib layers provide the basic necessities for achieving
application portability. By incorporating the user interface into Xlib
calls an application's user interface can be easily ported to different
hardware platforms. Because Xlib is so primitive these two layers provide
little support for reusability. '1ven such basic structures such as menus
and scrollbars must be built within the application. An application
program must handle and interpret the individual keystrokes of user input.
Unless a developer makes a conscious effort to separate the user interface
components in his application the user interface becomes tightly bound to
the application code, and, thus, difficult to reuse and develop consistent
user interfaces across applications.

4.2 Intrinsics

The intrinsic layer provides the building blocks for creating reusable
user interface components, where the toolkit layer provides the reusable
components. In Xt the widget clasres are the reusable components. These
may be directly reusable as in menus and scrollbars or existing widgets
may be modified or extended by using the inheritance mechanism provided
in the object oriented approach of Xt. This method of inheritance is a
fundamental concept in promoting reusable code. In Xr, the field editors
and the dialogs are the reusable components. Xr does not have the concept
of subclasses, and building new components from old components requires
code modification.

The Xt toolkit provided by M.I.T. does not provide a large set of reusable
interface components. The widget set, Athena widgets (really a sample
widget set), provides only some basic building blocks for more complex
widgets. The Athena widget set includes a command button widget, a
scrollbar widget, label widget, and several types of forms and box widgets.
An application using these widgets must do a considerable amount of work
to create usable user interface components. Because of this many vendors
have created there own widget sets using the Xt Intrinsics. With vendors
developing their own widgets sets program portability, user portability
and user interface consistency may suffer, thus portable applications on X
require a single standard widget set.

The Xr toolkit provides many resuable user interface components with its
field editors and dialogs. In Xr the application may have to handle much
of the event handling which can reduce the reusability of code, but a
mechanism is available for dispatching event handler function to specific
windows. The dialogs take advantage of this feature to handle events in
various field editors contained in a panel.

7

27 March 1989 STARS-QS-02021/004/00

Application

UIMS I
--------------- I
Xt Ir -insics

widgets I

--------------- I
----------------------- I

Xlib
----------------------- I

Protocol

Figure 5: Application Program View of UIMS

4.3 UIMS

Another approach to user interfaces is user interface management systems
or UIMS [Myers 88] [Lowgren 88]. A UIMS attempts t: separate the user
interface portion of an application from the application itself. This
can help build better and more consistent user interfaces which are less
dependent on the application semantics. To achieve application portability
a UIMS must be built on top of a portable toolkit, otherwise the job
of porting an application becomes a job of porting the UIMS tool. More
UIMS systems are now being built upon X. OPEN/Dialogue from Apollo, TAE
Plus from NASA [NASA 88], Serpent from Software Engineering Institute
[Institute 88], and Chiron from University of California Irvine [Young 88]
[Durand 89] are built upon X. The latter two generate user interfaces for
Ada.

Using a UIMS introduces new problems into building good user interfaces.
Some UIMS tools are difficult to use; the interface must be specified in
a special language in some UIMS. Of great concern is the restriction in
functionality often introduced by a UIMS. Many UIMSs '"rarely can be used
to help control the display and manipulation of the real application data
objects [Myers 88].'' UIMS technology is a very active research, and new,
better products are coming out. With more experience the technology will
mature and provide portable user interface support. Figure 5. shows the
application program relationship to a UIMS built on top of Xt.

5 X Standardization Efforts

The X Window System has become a de facto standard. With the distribution
of source code, a stable well-defined X was necessary, so M.I.T. organized
the X Consortium in 1988 to continue support for X and provide some control
over X. Any company or institution interested in contributing to X may
become a member. Changes to the official release of X mrst be approved by

8

27 March 1989 STARS-QS-02021/004/00

the consortium. Currently, a test suite is under development for verifying
compliance with the official X Consortium definition of X.

A group of UNIX vendors formed the Open Software Foundation (OSF) in 1988
to develop a single UNIX operating system and portable software. One task
of OSF was to develop a plan for portable user environment. In a six month
evaluation of existing vendor products, OSF develored an X Window System
based user environment, called Motif[Hinckley 89], defined by combining
HP's Common X Interface and Window Manager, and DEC's X User Interface and
User Interface Language. Also included were the HP/Microsoft Style Guide
which includes Presentation Manager compatibility. This forms the core
of the OSF user environment. OSF also identified several UIMSs for OSF
compliant environments:

o Open Dialog from Apollo

o BASE/OPEN from Swedish Telecom

o Generic Window Manager from Groupe Bull

Use of a UIMS is optional in OSF compliant environments. OSF plans to
do further research on Carnegie Mellon's Andrew System, an object oriented
user environment ported to work on X.

Sun Microsystems and AT&T agreed to merge their versions of UNIX, and have
further agreed to use the OPEN LOOK Graphical User Interface which defines
a user interface 'look and feel.'' Sun's next generation toolkit View2 is
similar to the original SunView, but implemented directly on Xlib. AT&T's
XT+ is based on Xt intrinsics. Both adhere to the OPEN LOOK definition.

In addition to the industry cooperative agreements, formal standardization
of X has begun. The ANSI graphics standards committee X3H3 has a task
group X3H3.6 working on a formal standard for the X protocol. A draft is
currently before X3H3 for ballot, and a standard is expected in 1990. Work
should begin shortly on an Xlib standard in X3H3.6. Plans are to start
with a C language binding for Xlib and follow with an Ada binding.

IEEE recently formed a committee P1201 to work on drivability standards
and program interface standards for the upper layers of X. Drivability
standards are an attempt to standardize application program actions for
certain user actions, e.g. a standard action for a left mouse button
click. OSF has taken the lead in defining the intrinsics and toolkit
standards by offering Motif as the basis for P1201 work.

The National Institute for Standards and Technology (NIST, formerly NBS)
has drafted a Federal Information Process 4.ng Standard (FIPS) for user
interfaces. This FIPS is based on X and the Xt intrinsics, using the
interface reference model shown in Figure 6.

The industry has embraced X for standard user interfaces, and all standards
and cooperative efforts are Xt based. Clearly, an Xt based window
system provides the greatest opportunity for portable C applications in the
workstation environment. Ada applications should be able to capitalize

9

27 March 1989 STARS-QS-02021/004/00

MODEL LAYER I COMPONENT
--
16 Application I Application Logic
I--I
15 Dialogue I UIMS, Window Manager
I------------------ --------------------------
14 Presentation I UIMS, Window Manager
I-- 1
13 Toolkit I Toolkit
I-------------------I-------------------------I
12 Subroutine Xt Intrinsics

Foundation
I------------------I-------------------------I
11 Data Stream I Xlib

Interface I
I------------------ I-------------------------I
10 Data Stream I X Protocol
I Encoding I

Figure 6: NIST User Interface Reference Model

on the directions provided by the efforts in C. Both the ANSI and IEEE
standards bodies plan to offer Ada standards, and these will be based
on functional specifications used in developing C standards including Xt
intrinsics.

6 Alternative Window Systems

X is not the only window system, and competition from other window systems
remains a barrier to application program portability. Most of these
competing windowing systems are proprietary which precludes their replacing
X. Principal reasons for X's popularity are that X is not proprietary,
M.I.T. encourages porting X to different hosts, and the widespread desire
for application portability. The Apple Macintosh window system might be
a good candidate for a standard window system, but Apple has made it
clear that it intends to keep its software proprietary. Sun Microsystem's
Network Extensible Window System NeWS came too late to compete with X, and
Sun's window system now supports both X and NeWS.

The most serious competitor might be IBM's Presentation Manager. The large
OS/2 market makes Presentation Manager a desirable window system since a
large application base exists for PCs which vendors would like to port to
other hosts. IBM is moving to make Presentation Manager a window interface
standard [Hanner 88]. Both X and Presentation Manager are moving into
each others domain. Work is underway in various companies to put X on

10

27 March 1989 STARS-QS-02021/004/00

PCs. Currently, performance problems and memory consumption are a problem
in running X on PC class machines. HP is attempting to put Presentation
Manager on top of X and permit both X and Presentation Manager to exist
simultaneously on a system.

X and Presentation Manager have strengths; X in the distributed UNIX
environment and Presentation Manager its rich application program interface
(API) and large market. Both have weaknesses; X has many different
toolkits, and Presentation Manager does not address a distributed
environment. X does not yet address the large body of UNIX users using
ASCII terminals, although Visual Technology is developing an X terminal to
address this market. See [Morris 891 for an extended discussion. The
standardization efforts by X Consortium, OSF, ANSI and IEEE may resolve the
variety of APIs currently on the market for X, but not soon. The use of
the Presentation Manager Style Guide by OSF may provide common "look and
feel'' between the two window systems. Over time t two window systems
may converge into a single window system or at least develop common APIs
which would solve the portability problems, but nothing can be expected
soon, and no clear movement is apparent to merge the two.

7 X and Ada

Most activity involving X is in the C community, but there is a small
group of people working on X Ada bindings or implementations. Science
Applications International Corporation (SAIC), in a STARS Foundation
contract, produced public domain Ada bindings for Xlib and the Xr toolkit,
and is also working on an Xt Ada implementation. There exist some
proprietary bindings or implementations of Xt, but these are not well
publicized or available for evaluation. Sanders Associates is working on
an Ada X server which they will consider adding to the public domain.
Work on an Ada version of X by the X Consortium has been proposed by
its director Robert Scheifler, but as yet no companies have shown enough
interest to fund the work. In the ANSI and IEEE communities there is only
a small interest in Ada bindings. Both X3H3.6 and P1201 have committed
first to developing C bindings leaving work on Ada bindings for later.
There are two UIMSs that generate X code in Ada, TAE Plus and Chiron.
Neither are product quality at this point.

The STARS Q14 task has worked with the SAIC bindings to Xlib and Xr, and
the remainder of this section presents observations and conclusions on the
usefulness of these bindings, and suggestions for future directions.

7.1 Ada Xlib Bindings

The SAIC Xlib bindings are by far the best of the two X bindings. The SAIC
bindings are a shallow interface to the X C code relying on direct calls
to the C functions. The Unisys STARS Standard Interfaces task found a few

11

27 March 1989 STARS-QS-02021/004/00

problems in the SAIC implementation, but none serious and all were easily
corrected. Missing from the SAIC bindings are a few Xlib functions which
require procedure variables as parameters to function calls. Most of the
missing Xlib functions permit applications to dynamically assign protocol
error handling routines by passing procedure variables as parameters to
functions. Ada does not directly support procedure variables, but
methods exist for supporting the functionality (Lamb 83]. However, these
mechanisms would not work in a shallow interface implementation.

A shortcoming in the Xlib bindings is the representation of event types
as enumerated types. In the C version the events are represented as
integers with a large block of consecutive integers, beginning with zero,
reserved by the X Consortium for future use. X was designed to be easily
extensible, but by using enumerated types for event types, adding new
events is nontrivial. An Ada application could not create a new event type
without modifying the the Xlib bindings. To abide by the X Consortium
conventions would mean adding a large number, thousands, of unused event
types to ensure the position in the enumerated type declaration matches the
event numbers used in the C code. The Xr toolkit actually has a new event
type, and rather than alter the types in Xlib, new routines for reading the
event queue are added to Xr, but the Ada Xlib functions to read the event
queue can not handle events with this new event type. Enumeration types
for events limit the extensibility of X, an important feature of X.

Otherwise, the SAIC bindings are a good starting point for an Ada API to
the X protocol. The ANSI X3H3.6 work on Xlib Ada bindings will use the
SAIC bindings as a starting point for its standards work, and by adding the
missing functionality and correcting the event typing problem, a good Xlib
binding will be available to Ada applications.

7.2 Ada Xr Bindings

The Ada Xr bindings, also written by SAIC under their STARS Foundation
contract, are also a shallow interface relying on direct calls to the HP
Xr C code, but unlike the Ada Xlib bindings are much less mature. There
are many implementation errors; most not difficult to fix. Testing seems
to have been minimal since many of the bugs render a particular function
completely unusable. With some perseverance a reasonable application can
be prototyped. The current version is certainly not of production quality.
Honeywell is currently doing a thorough testing and debugging of the code,
and once that is completed a more usable version should be available in the
public domain. Even with the Honeywell work, Ada Xr has serious problems.
Firstly, one important feature of C Xr is missing. Xr offers the ability
to create window handlers and menu handlers which are passed as procedure
variables to the C Xr code. As in Xlib, features requiring procedure
variables are omitted. Unlike Xlib, though, this feature is important to
Xr. Without these event handling functions, the user interface is more
deeply embedded into the application code, thus reducing code portability
and reusability. This is particularly inconvenient for menu handling.

12

27 March 1989 STARS-QS-02021/004/00

A second problem is the difficulty extending Xr. An important feature
of the C implementation is the ease of adding new field editors. This
is made difficult in the Ada binding by the use of enumeration types
to identify field editors and variant records for the field editors data
structures. To add a new field editor requires modifying routines in the
Ada Xr intrinsics to handle new field editors. This means an application
programmer must know how to modify and recompile the Ada Xr bindings, which
is unnecessary in C.

The remaining problems are more fundamental problems with the Xr toolkit
rather than Ada specific problems, but these are nonetheless important
in considering Xr for Ada applications. Firstly, Xr relies on the
application's use of Xlib calls for some window management functions,
whereas in Xt, Xlib is more transparent to the application developer.
Second, the field editors have built in ''look and feel''. Even menus
have a well-defined ''look and feel'' with few options. The Xr ''look and
feel'' is fine if it agrees with the desired 'look and feel'' for the
application, but if not, field editors written in C must be modified or be
completely rewritten which becomes a problem in Ada because of the lack of
extensibility. This is a serious obstacle in creating domain-tailored user
interfaces.

Finally, and perhaps most importantly, Xr is a dead end. The X community
has chosen Xt as the intrinsics for building toolkits. Beyond the
debugging effort at Honeywell, there is no one to support or extend Xr. At
an Ada X "'birds-of-a-feather'' session at the 1989 X Technical Conference,
the major complaint of Ada X application programmers was the lack of a
focal point for Ada X support. The standards community, including NIST,
is writing standards based on Xt, and Ada products based on Xr will not
meet future standards. Better support can be expected by staying in the
mainstream of the X community. UIMSs are expected to be written to work on
top of Xt, not Xr, and these UIMSs will be capable of generating Ada or C
as TAE Plus does. TAE Plus currently works on top of Xr, but NASA expects
to have an Xt based version in 1989, and support for Xr will probably
disappear after the Xt release.

7.3 Future Directions for X and Ada

The Ada community needs to move into the mainstream of the X community, and
that means moving in the Xt direction. Xr should be dropped as the Ada X
toolkit, and a good Ada Xt toolkit developed. Xt is an object oriented
system, and neither C nor Ada support object oriented programming. The
design of Xt is based upon certain C language features such as procedure
variables and weak type checking. Ada does not have these features, so an
Ada implementation must find ways to provide the same functionality of Xt
as the C version. Implementing the Xt intrinsics in Ada raises a number of
design issues which are discussed in detail in the Appendix to this paper.
An implementation is preferable to a binding because of difficulties in
binding to the C data structures in a portable way.

13

27 March 1989 STARS-QS-02021/004/00

The Ada community needs to develop a single widget set; either build
one from scratch, or, if a standard widget set emerges from the
X standardization efforts, use a standard widget set. For an Ada
implementation of the Xt intrinsics, the widgets must also be written
in Ada, thus an existing C widget set can not be used directly, but
must be rewritten and kept up to date with the C versions. Finally,
active evaluation of UIMSs on top of X should be pursued as this will
further promote portability and reusability by separating further the user
interface from application semantics. The criteria for judging UIMSs
should include:

o it should be built on X

o easy access to X from an application since many UIMSs don't provide
all the functionality necessary for all applications

o ease of use by programmers

o the ability to isolate application program semantics from presentation
concerns

o the ability to define consistent interfaces across a wide class of
tools

8 Conclusions

The X Window System is now the dominant window system in the bit-mapped
graphics workstation environment. X is beginning to move into the PC
market and possibly the ASCII terminal marketplace. X is the way to go for
application portability, code reusability, and user interface consistency.
The proliferation of X toolkits stands in the way, but industry has
recognized the advantages of a single window system and toolkit, and the
cooperation shown in the X Consortium, OSF and the Sun/AT&T agreement
indicates the strength of the movement to a single, portable X based user
interface toolkit.

The Ada community can achieve many of its portability goals by leveraging
the work being done in C versions of X. The Ada community needs to develop
an Xt intrinsics based version of X, and develop, either from scratch
or from C implementations, a single widget set for Ada applications.
Without a single widget set, portability and reusability will suffer. Of
particular importance to STARS is a consistent user interface among tools
in the SEE. A single Ada Xt toolkit and widget set can provide this
consistency.

The Ada community must be prepared to incorporate the advances in UIMS
technology as technology appears. UIMSs should be built on top of X
to ensure portability, and must provide additional ease of use, reusable
user interface components, and support consistent user interfaces across
applications.

14

27 March 1989 STARS-QS-02021/004/00

A An Ada/X Toolkit Interface

Clearly, Xt represents the most stable toolkit architecture, and is the
beneficiary of de facto industry and academic consensus on application
interfaces to an X toolkit layer. As mentioned earlier, for Ada to move
into the mainstream of X interfaces, Xt must be considered as the basis for
an Ada toolkit.

There are many obstacles to creating an Ada/X interface based upon,
or derived from, Xt. Although it is claimed in [Swick 88] that Xt
is ''Portable across languages, computer architectures, and operating
systems'', even a casual study of the Xt intrinsics interfaces (or even
the interface guidelines presented in [Swick 88]) will reveal that language
independence has not been achieved. The extent to which C language
dependencies have been embedded in the current Xt implementation renders
impractical (or impossible) the shallow binding approach from Ada to the C
interfaces, as was done by SAIC for Xrlib and Xlib.

A.1 A Language Independent Toolkit Architecture

The language sensitivity of the C Xt interfaces raises an important
question: how can an Ada toolkit interface be established which leverages
design, implementation, and toolkit acceptance which stems from the Xt de
facto status? More succinctly, is it possible to have an Ada/X toolkit
based upon Xt?

The answer to this question depends upon the extent to which Xt exhibits
an identifiable language-independent architecture. It is notable that
[McCormack 88] distinguishes between the Xt intrinsic mechanism and the Xt
architectural model; this is an apparent separation of implementation from
architecture. In our view, the Xt intrinsics are the implementation of the
language independent Xt architecture, and should be examined in an effort
to understand and specify what this model is, rather than form the direct
basis for an Ada/X toolkit.

There is strong evidence to support this approach. Using the C intrinsics
as an architectural basis for an Ada/X toolkit would introduce additional
(and extraneous) complexity in the form of interface mapping of the strong
Ada typing model, and the primitive (machine level) C typing model. Also,
the C intrinsics implement toolkit features which are provided as native
features to the Ada language. Both of these points are discussed in the
following subsections.

A.2 Intrinsics Implementation of Language Features

One very interesting aspect of the Xt model is that the toolkit intrinsics
layer is in fact the application program interface to the toolkit. That

15

27 March 1989 STARS-QS-02021/004/00

is, the intrinsics layer acts as an intermediary for application requests
to the widget set; the application does not directly communicate with the
widgets. From an Ada perspective, this seems a bit odd; consider what it
would mean to create an abstraction to represent an interface to another
set of abstractions. More 'natural'' is the idea that applications create
instances of widgets, and make requests of these instances directly.

We can deduce reasons why Xt uses the intrinsics as the intermediary
to widget objects. First, this is the only way (in C) to provide a
uniform interface to the widget set. That is, assume widget types Ti T2
and T3 all provide a common service. The interface to these services
must provide distinct entry names, since C does not support operator
overloading. In C, this would result in a tight coupling of application
code to particular widget implementations, which would render applications
less portable. Second, the intermediary intrinsics facilitate the clean
implementation of inheritance in Xt; the alternative would be to require
each widget implementation to provide inheritance semantics, which would
greatly increase the complexity of widget construction, and simultaneously
make any toolkit less robust. Although an Xt widget programmer is
responsible for specifying the inheritance hierarchy within the widget
structure definition, the intrinsics actually implement the inheritance
functionality.

A.3 C Interface Typing Dependencies in Xt

The Xt interfaces are also very language dependent. This has implications
not only on the form of the interface, but also on the underlying
implementation. That is, the projection of the C typing model on the
interface would greatly constrain possible Ada implementations based upon
these interfaces. There are many other instances of the projection
of unchecked C programming onto the Xt interfaces. Chapter 11 of
[McCormack 88], Resource Management, is notable in this regard.

Resource management allows the intrinsics to present an interface to manage
resource types defined by widget programmers. Resources in Xt are named
components of widgets, i.e., record fields which are addressable by string
name. Thus, the resource manager provides an interface to access and
manipulate fields of widgets of unknown types, whose fields are also
of unknown types. To provide such generality, the Xt resource manager
interface presents raw pointer types, and provides operations to perform
tasks such as run-time resource type conversion.

At this time it is not clear whether this kind of interface will be
necessary for an Ada/X toolkit, or whether each widget type in Ada could
be responsible for its own resource management while still presenting a
uniform interface. It is clear, however, that the Xt resource manager
interface poses significant obstacles for a clean Ada implementation (i.e.,
one that exhibits a strongly typed interface).

16

27 March 1989 STARS-QS-02021/004/00

A.4 Object Orientation: The Critical Challenge

The central theme of any Xt implementation is the provision of an
object-oriented toolkit architecture. There is widespread consensus
that object orientation is the appropriate window system abstraction
[Goldberg 83] [Palay 88] [Young 88]. The Xt implementation was hampered
in that C does not provide native language support for object oriented
programming. It does, however, provide sufficient flexibility to implement
the features required of object oriented languages [Stroustrup 86], e.g.,
procedure objects and polymorphism. Procedure pointers provide a natural
mechanism for implementing method inheritance; type relaxation provides
a natural mechanism for implementing subclass polymorphism and resource
inheritance.

For an Ada toolkit to provide equivalent functionality and extensibility
to the Xt implementation, it must exhibit (externally) the above mentioned
object oriented features. Since Ada, like C, also lacks native language
features to support object oriented features, most notably inheritance, it
is clear that an Ada/X toolkit will also have to rely on some intrinsic
layer. The key issue is whether Ada provides the linguistic support (e.g.,
procedure objects) to implement this intrinsic layer while still presenting
a strongly typed toolkit interface.

A.4.1 Procedure Types in Ada

Ada does not support procedure types. This would appear to be a
serious obstacle for implementing method inheritance, and for dynamic (i.e.
run-time) modification of widget behaviour. The lack of procedure type in
Ada was not an oversight in language design, but rather recognition that
the combination of a procedure types and block scoping would create serious
program reliability problems. The core of the problem is simply this: the
scope of a procedure object must be identical to the scope of the procedure
the object references.

Assume the existence of a procedure type in Ada, and the pre-defined prefix
operation '' used to activate the procedure object (as in C). Figure
7 illustrates in a simple setting the problem alluded to above. In
this example, nestedobject no longer exists at the time the procedure is
indirectly executed. C does not suffer from this problem, since in C
all functions are defined at lexical level 0. The point of this example
is to highlight that any Ada callback implementation which makes use of
procedure pointers will be unsafe*. Although Ada provides an avenue for
getting the address of a procedure, and thus a (non-portable) means of
having procedure objects, the above scoping problems are more serious than
portability concerns, and argue strongly for an alternative mechanism for
introducing procedure types.

* This is not to imply that a safe procedure type can not be designed into
the Ada language.

17

27 March 1989 STARS-QS-02021/004/00

with text io; use text io;
procedure outtermost is

globalproc: procedure;

procedure inner_1 is

nested_object: integer:- 999;

procedure inner_2 is
begin

put(nested_object'image);
end inner_2;

begin
globalproc:= inner_2;

end inner_1;

begin
*global-proc; -- nested object does not exist in this context

end outtermost;

Figure 7: Scoping Problems with Procedure Types

One observation is that Ada does provide a task type, which could provide
a basis for simulating procedure types. One implementation is discussed
in [Lamb 83]. The problem we see with the tasking approach in general is
that it is not possible to provide alternate task bodies for a particular
task type, and thus each simulated procedure would represent a distinct
type which has only one instance. We have experimented with unchecked
conversion among task types to gain the effect of alternative task bodies
for the same task entry; however, we feel this solution is inherently
non-portable.
Fortunately, there is a safe procedure pointer mechanism available in Ada
which makes use of Ada generics. Appendix B of this report includes
the complete package specification, body, and sample application, of this
mechanism. This code has been tested under two different compilers,
and should be portable. The following points should be considered when
examining the specification in appendix B:

o This implementation is more general than the C procedure pointer
mechanism, since the Ada version supports nested functions, as well as
arbitrary entry points into the search path.

o The number of generic callbacks per instantiation can be varied to
optimize for application needs.

o The parameter types for the callbacks can also be made generic.

18

27 March 1989 STARS-QS-02021/004/00

o The callback package can be easily generated to provide for callback
procedures of arbitrary parameter profiles.

o The callback implementation is free to use other (less portable but
more efficient) mechanisms, e.g., the 'address solution.

A.4.2 Inheritance

The author admits to having no ready-made solution to propose for
simulating inheritance in Ada (as we had a proposal for simulating
procedure types). Examination of Xt provides valuable hints to one
possible implementation approach, although it is debatable whether the same
method would be appropriate for an Ada/X toolkit.

One point to note is that the Xt intrinsics do not wholly encapsulate
inheritance; the widget programmer must write his widgets under an Xt
discipline which will render the format of widget types (their type
representation) recognizable by the intrinsics. Xt maintains a class
hierarchy, which roughly equates to a type hierarchy. The built-in class
WidgetClass is (directly or indirectly) a parent class of all Xt classes.

WidgetClass is known to the Xt implementation and defines common properties
exhibited by all Xt widgets. Xt also has a built-in type which defines
common properties exhibited by all widget instances, called Widget. The
WidgetClass/Widget model corresponds to the Smalltalk model of class
methods and variables being distinct from instance methods and variables.

The widget programmer who wishes to add a new widget class to Xt inserts,
at the beginning of the new widget's class definition structure, the
structure which defines the widget's superclass. Thus the superclass
properties, or rather placeholders for these properties, are manually
''compiled'' into the new widget class structure.

Widget instances also contain instance data which is unique to the instance
of a class. The widget programmer defines the new instance type in
a similar way, by manually inserting the superclass instance structure
into the new widget instance type definition. Figure 8 illustrates this
structural subclassing method.

Because of this widget programming discipline, the intrinsics can perform
the equivalent of an unchecked type conversion from arbitrary widget types
to the base (recognized) types, Widget and WidgetClass. Thus, even though
the intrinsics don't know about widget sets beyond the built-in sets, it
knows how to access the relevant data fields of all widgets.

The implications of this kind of implementation on an Ada/X toolkit are
unclear, although some problems are evident. First, this approach requires
the intrinsics to know about representation details of widgets. This is a
problem not so much because it violates the principle of information hiding
as it is because it depends upon a compiler implementation choosing a

19

27 March 1989 STARS-QS-02021/004/00

/* This structure defines the components of the core class */

typedef struct {
WidgetClass superclass;
String class_name;
/* other connon fields */

1 CoreClassPart;

/* This structure defines the components of a subclass
of the core class */

typedef struct {
XtGeometryHandler geometry-handler;
XtWidgetProc change managed;
/* other composite widget fields */

} CompositeClassPart;

/* This is the actual subclass definition, which inserts
the core class components before the subclass components. */

typedef struct {
CoreClassPart core-class;
CompositeClassPart compositeclass;

} CompositeClassRec, *CompositeWidgetClass;

Figure 8: Xt Structural Inheritance

20

27 March 1989 STARS-QS-02021/004/00

physical record layout which agrees with the programmer's specified logical
record layout. Of course, the widget programmer could resort to Ada
representation clauses, although that too introduces portability problems
[Pollack 88].

Although we propose no concrete design at this time for implementing
inheritance, it appears that there are three broad avenues which should
be investigated as part of an Ada/X toolkit design. These are briefly
described in the following sections.

Weakly Typed Intrinsics Interfaces

This approach would project anonymous types onto the intrinsics interface,
as does the Xt implementation. That is, the interface would present
formal types such as system.address. This is an extreme approach, and
one which is not likely to be recommended. The only arguments in favor
of this approach would be a) necessity, if it is found that no strongly
typed interface can at the same time provide toolkit extensibility, or
b) that only machine-generated code would use these interfaces (e.g.,
UIMS-generated source).

Two points should be noted concerning the weakly-typed interface approach.
First, the onus would be placed upon the application programmer to
perform unchecked type conversion, or rely on the 'address attribute, to
communicate with the toolkit. Second, and more importantly, this approach
would argue strongly in favor of creating a pragma interface binding to Xt,
rather than an Ada toolkit implementation. If the toolkit needs to exhibit
weakly typed interfaces in order to achieve extensibility, then mapping Ada
interfaces to pre-existing (and tested) C interfaces could be the most
economical solution.

Weakly and Strongly Typed Intrinsics Interfaces

This approach would distinguish two classes of intrinsics interfaces:
those used by the application programmer, and those used by the widget
programmer. The assumption is that the application programmer is
not concerned with the implementation of inheritance or other toolkit
extensibility functions, and so could (possibly) be insulated from these
interfaces. On the other hand, the widget programmer would have to make
use of such resources in order to have access to e.g., the class hierarchy
which implements inheritance.

This approach also works under the assumption that strict typing works
to the contrary of toolkit extensibility; if this assumption proves too
pessimistic, the set of weakly-typed interfaces could be the empty set.
Thus, this approach is not to be distinguished from an approach which
provides a strongly typed intrinsics interface, since that would be the
most desirable goal.

21

27 March 1989 STARS-QS-02021/004/00

Program Generation Approaches

Perhaps the most extreme solution is to implement the Ada/X toolkit by
means of program generators. This approach ig based upon the observation
that the Xt intrinsics exhibit a generalized type interface Decause the
number and types of widgets a ,d resources being managed are not known to
the toolkit. That is, a strongly typed toolkit implementation could be
constructed, but only at the expense of toolkit extensibility. However,
a generator could be constructed which parameterizes this information;
the toolkit interface and implementation could be generated from a
specification of toolkit widgets.

This approach would depart from the Xt model, which distinguishes the
intrinsics from the widget set. In the generation approach, the intrinsics
would be derived from the widget set. However, it is not clear that this
is a significant objection to the generation approach. In any event,
widget programmers are considered as distinct from application programmers,
and so the distinction between intrinsics and widget interfaces may be
conc.L.ived.

A.5 Conclusions

The Xt toolkit provides the best basis for building an Ada/X toolkit which
will exhibit the desired functionality and flexibility needed for domain
tailorable STARS human interfaces, and will facilitate industry acceptance
of the Ada/X toolkit.

Xt also presents difficult engineering problems. Most significant
is the lack of a concise definition of the language independent Xt
architecture. This architecture, although distinguished in [McCormack 88]
from the Xt intrinsics, is nonetheless defined in terms of the Xt
intrinsics. UnfcLtunately, the Xt intrinsics project an implementation,
not an architecture, and exhibit weakly typed interfaces which would be
inappropriate to mimic in Ada.

Although much work needs to be done to specify an Ada/X architecture
derived from Xt, one important characteristic is clear: Ada/X must provide
an object-oriented model similar to the model provided by Xt. Although
we specified a mechanism for safely implementing procedure objects in the
Ada/X toolkit, fundamental questions remain concerning the implementation
of inheritance.

The first step in constructing an Ada/X toolkit must be specification
of a language independent toolkit architecture. This architecture
will be implemented by a set of language/implementation specific toolkit
intrinsics. For the Ada/X toolkit, the first objective ought to be
specification of clean, strongly typed intrinsic interfaces. If strong
typing needs to be relaxed to provide toolkit extensibility, an attempt
should be made to isolate the type relaxation to the implementation, not

22

27 March 1989 STARS-QS-02021/004/00

interfaces. Should this also prove impractical, then the weakly-typed
interfaces should be isolated to interfaces used by widget programmers, and
not made visible to application programmers.

Only as a last resort should alternative approaches, such as pervasive weak
typing or toolkit generation approaches be examined. An important research
result of the Ada/X toolkit work will be to establish the relationship
between strong typing and the implementation of extensible systems.

23

27 March 1989 STARS-QS-02021/004/00

B Complete Callback Implementation

B.1 Callback Mechanism Specification

package callback-mechanism is

CALLBACK CALL ERROR: exception;
CALLBACK_INSTALL ERROR: exception;
CALLBACKRANGEERROR: exception;

MAX CALLBACKS: constant:= 1024;
NUM CALLBACKS: constant:- 3;

subtype callback id-range is natural range 0 .. MAXCALLBACKS;

-- package callback ids provides an ADT for callback identifier types
-- not limited private so that package callbacks can assign default
-- null callback identifiers if no actual callback procedure is specified
package callback ids is

type callback id type is private;
nullid: constant callback-id-type;

function to callback id range(id: callback id type)
return callback-id-range;

private
function next callback id return callback id range;
type callbackid type is record

the callback-id: callback id range:- next callback id;
end record;
null id: constant callback id type:-

(the callback id => callback id range'first);
end callback ids;

use callback ids;

-- the default procedures will never actually be called
procedure defaultnextcallback(id: callback id type; s: string);
procedure defaultcallback(s: string);

generic
-- This implementation supports three callbacks per instantiation.
-- If the user has 4 actual procedures, two instantiations are needed.
with procedure cbl(s: string) is defaultcallback;
idl : in callback id type:- nullid;

with procedure cb2(s: string) is defaultcallback;
id2 : in callback id-type:- nullid;

24

27 March 1989 STARS-QS-02021/004/00

with procedure cb3(s: string) is defaultcallback;
id3 : in callbackid-type:- nullid;

-- nextcallback chains callback instantiations, giving the effect
-- of a linked list of package instantiations!
with procedure nextcallback(id: callback id-type; s: string)

is default next call back;

package callbacks is
procedure callback (id : callback id type; s: string);

end callbacks;

end callback-mechanism;

25

27 March 1989 STARS-QS-02021/004/00

B.2 Callback Mechanism Body

with system; use system;
package body callbackmechanism is

type callback mapped-id is
range callback id-range'first .. callback id-range'last * NUMCALLBACKS;

unmapped-id: constant callbackmapped id:- callbackmappedid'first;

callback id map : array(callback id range) of callback_mapped id:-
(others => unmapped-id);

startingat: callback mappedid:- callback mapped id'first + 1;
nextmappedid: callbackmapped-id:- starting_at;

package body callbackids is

nextid: callback id range:= callbackid-range'first + 1;

-- return a unique callback id
function next callback-id return callback id range is

i: calbctck id range:= aext id;
begin

next id:- next id + 1;
return i;

exception
when constraint error =>

raise CALLBACK_RANGEERROR;
end nextcallbackid;

-- select the callback id from the callback object
function to callback id range(id: callback id-type)

return callback id range is
begin

return id.the callbackid;
end tocallbackid range;

end callback ids;

-- these procedures should never be called, so raise exception
procedure defaultnextcallback(id: callback id type; s: string) is
begin

raise CALLBACKCALLERROR;
end;
procedure defaultcallback(s: string) is
begin

raise CALLBACK CALL ERROR;
end defaultcallback;

26

27 March 1989 STARS-QS-02021/004/00

package body callbacks is
-- each instantiation of callbacks has a distinct id range
low-range, highrange: callback mappedid:- callback mappedid'last;

procedure callback (id : callback id type; s: string) is
-- subtype assignment allows use of case statement
subtype callbackrange is callback_mapped-id range 1 NUMCALLBACKS;
mapped id: callback mapped id:-

callback id map(tocallback id range(id));
index: callback_range;

begin
if mapped id in lowrange .. high_range then

index:- mapped_id - lowrange + 1;
case index is

when 1 -> cbl(s); -- call the actual callback
when 2 => cb2(s);
when 3 -> cb3(s);

end case;
else -- in the range of a previous instantiation

next callback(id, s);
end if;

end callback;

begin -- initialize
lowrange:- startingat;
highrange:- low range + NUM CALLBACKS - 1;
startingat:= high range + 1;

-- do this if then code for each formal callback
if cbl'address /- default callback'address then

if idl /- null id then
if callback id map(tocallback id range(idl)) /-

unmappedid then
raise CALLBACKINSTALLERROR; -- valid procedure, duplicate id

else
callbackid map(to_callback id range(idl)):- nextmapped id;

end if;
else

raise CALLBACKINSTALLERROR; -- valid procedure, null id
end if;

end if;
nextmappedid:- nextmapped-id + 1;

if cb2'address /- default callback'address then
if id2 /- null id then

if callback id map(to_callback id range(id2)) /-
unmapped7id then

raise CALLBACK_INSTALLERROR; -- valid procedure, duplicate id

27

27 March 1989 STARS-QS-02021/004/00

else
callback id map(to_callback id range(id2)):- nextmappedid;

end if;
else

raise CALLBACKINSTALLERROR; -- valid procedure, null id
end if;

end if;
nextmapped id:= nextmappedid + 1;

if cb3l'address /- default callback'address then
if id3 /- null id then

if callback id map(to_callback id range(id3)) 1=
unmapped7id then

raise CALLBACKINSTALLERROR; -- valid procedure, duplicate id
else

callback id map(to callback id range(id3)):= nextmappedid;
end if;

else
raise CALLBACKINSTALLERROR; -- valid procedure, null id

end if;
end if;
nextmapped id:= next mapped-id + 1;

end callbacks;

end callback mechanism;

28

27 March 1989 STARS-QS-02021/004/00

B.3 Callback Mechanism Use

with callbackmechanism; use callbackmechanism;
with textio; use text io;
procedure test callback-mechanism is

use callback ids;

procedure p(s: string);
procedure q(s: string);

pl: callback id type; -- pl and ql now have valid callback ids
ql: callback id type;

-- in pcallbacks, cb2 and cb3 are "default" callbacks
package p-callbacks is new callbacks(cbl => p, idl => pl);

-- qccallbacks uses pcallbacks callback routine to chain instantiations
-- procedure p and q could have both been installed in a single
-- instantiation, but we're demonstrating instantiation chaining.
package qcallbacks is new callbacks(

cbl ->q,
idl -> ql,
nextcallback => p_callbacks.callback);

use qcallbacks; -- make the last instantiation directly visible

-- procedures p and q do different things
procedure p(s: string) is
begin

putline("P:" & s);
end p;
procedure q(s: string) is
begin

put_line("Q:" & s);
end q;

begin
callback(pl, "hello world");
callback(ql, "hello world");

end testcallbackmechanism;

29

27 March 1989 STARS-QS-02021/004/00

REFERENCES

[Burleigh 88] Burleigh, David. Programming The Xt Toolkit. 1988.
Xhibition'88 X Toolkit Tutorial.

[Durand 89] Durand, Jennifer-Ann M., Young, Michal, and Troup,
Dennis B. A Tool Builder's Guide to Chiron (Version
0.1, Preliminary). 1989. Arcadia Document UCI-88-18.

[Goldberg 83] Goldberg, Adele and Robson, David. Smalltalk-80 The
Language and Its Implementation. Addison-Wesley, 1983.

[Hanner 88] Hanner, Mark Allen. Gambling on Window Systems. UNIX
Review 6:50--59, December 1988.

[HewlettPackard 88] Hewlett-Packard. Programming With the Xrlib User
Interface Toolbox. 1988.

[Hinckley 89] Hinckley, Kee. OSF/MOTIF. 1989. Presentation at the
1989 X Technical Conference.

[Institute 88] Institute, Software Engineering. An Introduction ot the
Serpent System. 1988.

(Lamb 83] Lamb, David A. and Hilfinger, Paul N. Simulation of
Procedure Variables Using Ada Tasks. IEEE Transactions
On Software Engineering SE-9:13--15, January 1983.

[Lowgren 88] Lowgren, Jonas. History, State and Future of
User Interface Management Systems. SIGCHI Bulletin
20:33--44, July 1988.

[McCormack 88] McCormack, Joel, Asente, Paul, and Swick, Ralph R. X
Toolkit Intrinsics - C Language X Interface. 1988. X
Version 11, Release 2.

[Morris 89] Morris, Robert R. and Brooks, William E. A Graphic
Comparison. PC Tech Journal 7:106--118, February 1989.

[Myers 88] Myers, Brad A. Tools for Creating User Interfaces: An
Introduction and Survey. Technical Report CMU-CS-88-
107, Carnegie Mellon University, January 1988.

[NASA 88] NASA. Introduction to TAE PLUS. 1988. Century
Computing, Incorporated, 88-TAE-INTROlB.

[OReilly 88] O'Reilly and Associates. Xlib Programming Manual for
Version 11 Release 2 of The X Window System Volume One.
1988.

30

27 March 1989 STARS-QS-02021/004/00

[Palay 88] Palay, Andrew J., Hansen, Fred, Kazar, Mike, Sherman,
Mark, Wadlow, Maria, Neuendorffer, Thomas, Stern,
Zalman, Bader, Miles, and Peter, Thom. The Andrew
Toolkit - An Overview. In Proceedings USENIX Technical
Conference. Winter 1988.

[Pollack 88] Pollack, B. and Campbell, D. The Suitability of Ada for
Communcations Protocols. In Sixth National Conference
on Ada Technology, pages 170--181. March 1988.

[Scheifler 86] Scheifler, Robert W. and Gettys, Jim. The X Window
System. ACM Transactions on Graphics 5:79--109, April
1986.

[Stroustrup 86] Stroustrup, Bjarne. The C++ Programming Language.
Addison-Wesley, 1986.

[Swick 88] Swick, Ralph R. and Weissman, Terry. X Toolkit Widgets
- C Language X Interface. 1988. X Version 11, Release 2.

[Young 88] Young, Michal, Taylor, Richard N., and Troup, Dennis B.
Software Environment Architecture and User Interface
Facilities. IEEE Transactions on Software Engineering
14:697--708, June 1988.

31

